
641Lexicography in gLobaL contexts

In Praise of Simplicity: Lexicographic Lightweight Markup
Language

Vladimír Benko
Slovak Academy of Sciences, Ľ. Štúr Institute of Linguistics
E-mail: vladimir.benko@juls.savba.sk

Abstract

Our paper presents a simple markup language – Lexicographic Lightweight Markup Language (LLML) that
has been used for almost the last three decades in the framework of two dozen lexicographic projects carried
out by our Institute, as well as in several projects carried out in co-operation with commercial dictionary pub-
lishers. While initially trying to solve the problem of insufficient computing power of early MS-DOS-based
personal computers in early 1990’s only, LLML is even today the central component of lexicographic worksta-
tions our lexicographers work with. Central components of the LLML syntax are introduced and exemplified
by a sample entry from the Dictionary of the Contemporary Slovak Language (SSSJ). The final part of the
paper describes in short some components of the LLML-aware toolbox, i.e., programs that are used in our
Institute during compilation, validation, proofreading and typesetting of the respective entries. Some of these
tools, however, are just a “bonus”, and “low-cost” projects could do even without them.

Keywords: lexicographic data representation, lightweight markup language, XML

1 Introduction

One of the typical features of lexicographic projects is that they usually take many years – in the case
of multivolume works, even decades – to complete. The developments in the area of information
technologies, on the other hand, are extremely fast. This usually means that several generations of IT
components may change during the life cycle of a project.

Today it is mostly taken for granted that dictionary data (at least in the framework of large-scale lex-
icographic projects) should be represented as “structured text”, i.e., encoded in XML and complying
to some standard, such as ISO 1951 (2007) or TEI-P5 (2018). The advantages of this approach have
described in several works (cf. Derouin & Le Meur 2008).

Nevertheless, we are aware of many projects that – for various reasons – do not use XML and rep-
resent dictionary date as “formatted text”, i.e., using a standard word processor, such as Microsoft
Word (e.g., Apresyan, 2014). Some of them do so just because they are continuing to use the same
method as when the project was started years ago, and do not have the resources to change it. The
main argument in such a case is usually that “XML is too expensive”, having in mind not only the
price of the appropriate software – an XML-aware text editor, or even a full-fledged Dictionary-Writ-
ing System (DWS) –, but also additional “human costs”, i.e. salaries for IT specialists necessary to
support the software, as well as training costs for the lexicographic team. The Microsoft Word format,
on the other hand, seems to be “cheap” – the necessary software is usually available anyway, and
almost no additional education for the lexicographers is necessary.

There are, of course, many disadvantages to such an approach, with probably the most important
being that it is difficult to enforce uniformity in dictionary entry structure, and such data is almost
impossible to validate.

642 Proceedings of the XViii eUrALeX internAtionAL congress

On the other hand, it is also worth noting that traditional lexicographers’ “mental model” of a dic-
tionary entry maps directly to typefaces and font styles, and working with a DWS requires “mental
switching” between two models: a “tree-structured” and a “formatted” one. This involves addi-
tional mental burden that – especially the older members of lexicographic terms – by not be easily
accepted easily.

In our paper we thus introduce a type of dictionary data representation that may be considered a
compromise between fully structured XML format and typographical-only format – using a markup
language that is nowadays referred to as Lightweight Markup Language (LML). The most important
feature of such languages is that their syntax is very simple, the data is readily comprehensible in
source form, and no special software (besides a generic text editor) is needed.

2 Historical Background and Related Work

“Lightweight markup languages were originally used on text-only displays which could not
display characters in italics or bold, so informal methods to convey this information had to
be developed. This formatting choice was naturally carried forth to plain-text email commu-
nications. … In 1986 international standard SGML provided facilities to define and parse
lightweight markup languages using grammars and tag implication. The 1998 W3C XML is
a profile of SGML that omits these facilities. However, no SGML DTD for most of the LMLs
is known.” (Wikipedia, 2018).

From this perspective, we can say that it was the conventions developed in e-mail (and USENET) that
evolved into languages like Markdown1 & reStructuredText2.

Our markup language, now called Lexicographic Lightweight Markup Language (LLML), has also a
fairly long history, and its first version was developed in 1990 during the project of retro-digitaliza-
tion of a one-volume monolingual Slovak dictionary that was later republished (KSSJ, 1997). Despite
its history, no (English) paper on LLML has yet been published. In 1992 this system was introduced
internationally , at the Budapest COMPLEX ’92 Conference (Benko, 1992). However, as it did not
appear in the Proceedings, and so only the Conference participants were informed about our efforts.
Our paper at the Slovko 2001 Conference (Benko, 2001), on the other hand, was in Slovak only, so
became “hidden” to the international lexicographic community.

Meanwhile, the language (with only minor modifications) has been used in the preparation of more
than 20 monolingual and bilingual dictionaries, and is currently used in the framework of the mul-
tivolume Dictionary of the Contemporary Slovak Language (three volumes already published, five
more to come; SSSJ 2006, 2011, 2016).

3 LLML

We believe that the main point of LLML can be described by the keyword “simple”. The language
elements can be learned within the first day of use, even by novice lexicographers, and a DIN A5
“cheat sheet” typically contains almost everything they need to know. Moreover the LLML type of
markup can also be considered “natural”, as punctuation marks are traditionally used to enhance the
structure of highly complex texts.

1 https://daringfireball.net/projects/markdown/
2 http://docutils.sourceforge.net/rst.html

643Lexicography in gLobaL contexts

The main elements of the LLML syntax can be summarized as follows:

• A dictionary entry is represented a single block of text, entries are separated by a blank line.
Though the length of individual lines is not specified by the language itself, it is recommended to
keep lines relatively short.

• A line starting with an exclamation mark is used as an entry identifier; its syntax is project de-
pendent. For our retro-digitization projects this has carried information on page and column num-
bers; in some early projects where dictionary entries had first been compiled on traditional paper
slips, these slip numbers were indicated.

• A line starting with a question mark (optionally preceded by whitespace) is considered as a “com-
ment”, i.e., will not appear in the final output. Comments are useful for communication between
the entry author and editor(s), and provide a device to record editorial decisions.

• “Structural breaks”, such as new sense, phraseology zone or run-on, begin on a new line indented
by two spaces.

• The respective “information fields” of the entry are indicated by a small set of punctuation and
special characters. The actual syntax may slightly differ from one project to another. Table 1
shows the actual syntax used within the SSSJ project.

Table 1: Main LLML Syntax Elements (SSSJ Dialect)

LLML Element Default rendering
"headword" headword
"headword^1" headword1 (headword with index)
"%substandard headword" substandard headword
"*incorrect headword" *incorrect headword
"~crossref headword" crossref headword
[pronunciation] [pronunciation]
|*PoS label| pos label
|other label| other label
<etymlology> ⟨etymology⟨
'example text' example text
[*reference] [reference]
{1}, {2}, … 1., 2., … (sense numbers)

{M}, {T}, … □, □, … (special symbols indicating “structural breaks”
in entry structure)

(unmarked) (unmarked) … definitions, explanations, etc.

As the LLML syntax is very similar to that of programming languages, by using text editor featuring
user definable syntax highlighting the respective information fields in colors, the lexicographer’s
work becomes even more user-friendly. We hope that the reader can appreciate its legibility in Figure
1, showing a screenshot of an example entry as displayed by the Notepad++ editor using a custom
“language definition”.

Identification and comment lines are displayed in gray, so that the entry text itself is highlighted. The
cyan vertical line at the right margin indicates the suggested line length, and other colors highlight
the respective structure elements.

644 Proceedings of the XViii eUrALeX internAtionAL congress

Figure 1: Lexicographic Lightweight Markup Language (LLML) text editor screenshot (Notepad++)

4 Data Validation

The LLML approach to lexicographic data representation does not allow for full-scale data valida-
tion, but essential data checks can be performed. A special validation parser had to be written from
the very beginning of using LLML in order to detect errors with regard to the “well-formedness”
of the dictionary data, such as unmatched syntactic structures and non-sequential appearance of
sense numbers. With the advent of text editors with color syntax highlighting the former problem
became less acute, as unmatched “tags” are usually immediately apparent by “spoiled” colors. The
tool, nonetheless, proved to be quite useful and is being gradually enhanced to include checking
for the presence and/or absence of whitespace around punctuation, presence of suspicious special
characters, etc. The error report produced by the validation parser always contains a detailed error
message, including the respective excerpt from the input file indicating the affected line numbers,
such as those at Figure 2.

Figure 2: Error report generated by the Validation Parser

645Lexicography in gLobaL contexts

The first message (line 157 of the source file) indicates a missing space after a comma, and the sec-
ond message (lines 228 to 231) states that a sense number out of sequence has been encountered. The
lexicographer can usually detect the exact cause of the issue from the error report itself, without the
need to study the larger context of the source file.

5 LLML Toolbox

In this section we want to mention some other parts of our LLML-aware toolbox that are needed to
cover the whole process of dictionary creation:

(1) “Paragraph grep” – an open-source perl script used to extract dictionary entries. This provides
for the creation of ad-hoc lists of entries based on regular expressions,

(2) “Paragraph sort” – custom sort using marked headword as sort keys. A simple modification of a
standard (quicksort-based) sort.

(3) Converter to proofreading format (an MS-Word document in RTF format retaining original line
breaks and comments, and indicating entry identifiers and line numbers (Figure 3). The line num-
bers are convenient in subsequent editing of the dictionary data.

Figure 3: Proofreading format (line breaks and comments retained, line numbers indicated)

(4) Converter to typesetting format (entry identifiers and comments deleted, Figure 4). This is in
fact the only “compulsory” part of the toolbox. It works in two phases: firstly the LLML data is
converted to “presentation type” of XML format, i.e., indicating the respective typefaces the in-
formation fields are mapped into. The second step can use any standard tool for XML conversion,
in our case generating an RTF format that can be imported into the respective publishing system.

646 Proceedings of the XViii eUrALeX internAtionAL congress

Figure 4: Final format (typeset entry)

6 Conclusion and Further Work

From the early 1990s, when our first LLML-based projects started, we considered it as something tem-
porary that should (and will) eventually be replaced by a more sophisticated representation. During
the SGML period, however, our computing equipment was firstly not powerful enough to implement
it, and secondly the SGML-aware software was also far beyond what we could afford to buy. With the
advent of XML, the situation has changed dramatically, both in terms of the computing power of our
equipment and availability of affordable software tools.

We have observed the efforts of introducing the XML technology at our partner institutions that, sur-
prisingly, turned out to be not as straightforward and easy as we would imagine. Though the comput-
ing power of modern workstations is no longer the main problem, another scarce resource appeared:
the XML-based projects require much more (human) IT support. This is probably why we are still
reluctant to switch our main project to it. We realize, however, that the day is approaching, and that
better interoperability will most likely be the motivating main reason.

One of our anonymous reviewers noted that “… I accept that you use the framework what you de-
scribe, but I doubt that it could be recommended for other (new) dictionary projects as a standard
instead of XML”. This is naturally difficult to argue against, yet there is at least one area where the
LLML-based approach can be of an advantage even today: the dictionary retro-digitization projects
involving manual proofing of OCR-ed material. According to our experience, it is convenient here to
split the process into two separate phases, with the first aimed to achieving only the “typographical
identity” – an explicit, simple markup can ease the whole process significantly.

647Lexicography in gLobaL contexts

References

Benko, V. (1992). Late Computational Support for a Dictionary Project. Presentation at the COMPLEX ’92 Inter-
national Conference. Budapest, Hungary. (unpublished).

Benko, V. (2001). Počítačová podpora lexikografických projektov – retrospektívny pohľad. (Computational Sup-
port of Lexicograpphis Projects – A Retrospective View). In: Jarošová, A. (ed) Slovenčina a čeština v počítačo-
vom spracovaní. Proceedings of the Slovko 2001 Conference. Bratislava: VEDA.

ASRYa (2014). Apresyan, Yu. (Ed.) Aktivnyj slovar’ russkogo yazyka. Tom 1. A – B. Yazyki slavyanskoj kul’tury,
Moskva.

Derouin, Marie-Jeanne and Le Meur, André (2008). ISO-Standards for Lexicography and Dictionary Publishing.
Proceedings of the 13th EURALEX International Congres. Barcelona: Institut Universitari de Linguistica Apli-
cada, Universitat Pompeu Fabra, 2008. pp. 663 – 668, ISBN 978-84-96742-67-3.

KSSJ (1997). Krátky slovník slovenského jazyka. Red. J. Kačala – M. Pisárčiková. 3. dopl. a preprac. vyd. Bratisla-
va: Veda 1997. 943 s. ISBN 80-224-0464-0

ISO (2007). ISO 1951:2006(en), Presentation/representation of entries in dictionaries — Requirements, recommen-
dations and information.

SSSJ I (2006). Slovník súčasného slovenského jazyka. A – G. Hl. red. K. Buzássyová – A. Jarošová. Bratislava:
Veda, vydavateľstvo Slovenskej akadémie vied 2006. 1134 p. ISBN 978-80-224-0932-4

SSSJ II (2011). Slovník súčasného slovenského jazyka. H – L. Ved. red. A. Jarošová – K. Buzássyová. Bratislava:
Veda, vydavateľstvo Slovenskej akadémie vied 2011. 1087 p. ISBN 978-80-224-1172-1

SSSJ III (2016). Slovník súčasného slovenského jazyka. M – N. Ved. red. A. Jarošová, Bratislava: Veda, vyda-
vateľstvo SAV 2015. 1100 s. ISBN 978-80-224-1485-2.

TEI (2018). TEI Consortium, eds. TEI P5: Guidelines for Electronic Text Encoding and Interchange. TEI Consor-
tium. http://www.tei-c.org/Guidelines/P5/

Wikipedia (2018). Lightweight markup language. https://en.wikipedia.org/wiki/Lightweight_markup_language.
[15/06/2018]

Acknowledgement

This work has been, in part, financially supported by the Slovak VEGA Grant Agency, Project No.
2/0017/17.

